Not further reproduction or distribution of this copy is permitted by electronic transmission or any other means. The user should review the copyright notice on the following scanned image(s) contained in the original work from which this electronic copy was made.

Section 108: United States Copyright Law

The copyright law of the United States [Title 17, United States Code] governs the making of photocopies or other reproductions of copyrighted materials.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the reproduction is not to be used for any purpose other than private study, scholarships, or research. If a user makes a request for, or later uses a photocopy or reproduction for purposes in excess of "fair use," that use may be liable for copyright infringement.

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. No further reproduction and distribution of this copy is permitted by transmission or any other means.
Results: Western blotting revealed 8 protein bands against the CR antigen standard ranging from 26 to 120 kd. High MC/high PC dust samples yielded several bands spanning this molecular weight (MW) range. The low MC/high PC samples yielded only high MW bands (> 75 kd) whereas the high MC/low PC samples yielded no visible bands. When human serum from CR sensitized subjects was used as the detection antibody, multiple bands between 50 - 120 kd were observed for all dust samples analyzed.

Conclusion: PC antibody CR assays detected several high MW proteins not identified by MC assays. Although MC antibody CR assays are more sensitive and specific for detecting Bla g 1 (20-25 kd) and Bla g 2 (36 kd) in dust, they may underestimate CR exposure as CR-sensitized individuals reacted to several CR antigens above 36 kd.

Funding: University of Cincinnati

Successful Administration of a One-Day Imported Fire Ant (IFA) Rush Immunotherapy Protocol in Two Children

A. L. Parker, E. A. Meier, L. L. Hagan; Allergy/Immunology (Wilford Hall Medical Center), San Antonio Uniformed Services Health Education Consortium, Lackland AFB, TX.

Rationale: Young children with a history of anaphylaxis to IFA stings seem to be at a distinctly higher risk for repeat anaphylaxis as they do not know how to practice proper avoidance measures. One-day rush IFA immunotherapy in young children can provide immediate protection against anaphylaxis.

Methods: A 30 month-old male with a severe anaphylactic reaction to an IFA sting was admitted to the hospital. On admission day one, he was skin test positive to IFA and the next day underwent a one-day IFA rush immunotherapy. He was pretreated the night before and morning of skin testing with prednisolone (2mg/kg) and cetirizine (5mg). In the second case, a 22 month-old male with wheezing and hives after approximately 20 IFA stings was skin tested 10 days after the reaction. The day after positive skin testing, he underwent rush immunotherapy without pre-treatment. During rush immunotherapy, both patients received 10 shots ranging from 1:100,000 weight per volume (w/v) to 1:100 (w/v) every 30 to 60 minutes. Vital signs and chest auscultation were performed before each shot.

Results: Both patients had positive intradermal skin tests at 1:100,000 (w/v), notably including the first patient who had an anaphylactic reaction the previous day and received antihistamines prior to skin testing. Both patients tolerated the rush immunotherapy and had no systemic reactions.

Conclusions: We report the successful administration of IFA one-day rush immunotherapy in two young children under the age of 3 years. Young children who are at increased susceptibility to anaphylaxis from IFA stings could greatly benefit from this treatment.